CKD: Updates on Diagnosis, Treatment, and How to Delay Progression

Melissa Tollett, DVM, DACVIM
Specialized Veterinary Services

IRIS Staging of Chronic Kidney Disease (Dogs)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Creatinine (mg/dl)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Risk</td>
<td><1.4</td>
<td>Animal at increased risk.</td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>Nonazotemic. Some other renal abnormality present.</td>
</tr>
<tr>
<td>2</td>
<td>1.4-2.0</td>
<td>Mild renal azotemia. Clinical signs usually mild or absent.</td>
</tr>
<tr>
<td>3</td>
<td>2.0-5.0</td>
<td>Moderate renal azotemia. Extrarenal clinical signs may be present.</td>
</tr>
<tr>
<td>4</td>
<td>>5.0</td>
<td>Increasing risk of severe crisis.</td>
</tr>
</tbody>
</table>

IRIS Staging of Chronic Kidney Disease (Cats)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Creatinine (mg/dl)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Risk</td>
<td><1.6</td>
<td>Animal at increased risk.</td>
</tr>
<tr>
<td>1</td>
<td><1.6</td>
<td>Nonazotemic. Some other extrarenal abnormality present.</td>
</tr>
<tr>
<td>2</td>
<td>1.6-2.8</td>
<td>Mild renal azotemia. Clinical signs usually mild or absent.</td>
</tr>
<tr>
<td>3</td>
<td>2.8-5.0</td>
<td>Moderate renal azotemia. Extrarenal clinical signs may be present.</td>
</tr>
<tr>
<td>4</td>
<td>>5.0</td>
<td>Increasing risk of severe crisis.</td>
</tr>
</tbody>
</table>
Symmetric dimethylarginine (SDMA)

- Creatinine is most commonly used to estimate GFR
- SDMA also used to evaluate GFR
 - Occurs from methylation of arginine (all nucleated cells)
 - Excreted exclusively in the urine
 - Increases when GFR increases
 - Not influenced by lean muscle mass
 - SDMA can increase with 25-40% loss of renal mass

Substaging by Proteinuria

- Rule out pre-renal
 - Hemoglobin
 - Myoglobin
 - Immunoglobulins
- Rule out post-renal
- Goal is to identify renal proteinuria
 - Tubular
 - Glomerular (>2.0)

Substaging by Proteinuria

- UPC should be measured in all cases
 - Rule out hemorrhage and UTI
 - If azotemic and UPC>1.0 (greater risk)
 - Need at least 2 urine samples 2 weeks apart
 - If borderline re-evaluate in 2 months
 - Proteinuria may decline as renal function worsens
Response to Persistent Proteinuria

- Monitor
 - Detect worrisome trends
 - Stable patients “at risk”
- Investigate
 - Treatable infections
 - Inflammation
 - Neoplasia

Response to Persistent Proteinuria

- Intervene
 - Slow the rate of progression
 - Diet
 - Omega-3 fatty acids
 - Evaluate Omega 6:3 ratio (5:1)
 - Dosage 0.25-0.5 g/kg (DHA & EPA)
 - Safe upper limit 140 mg/kg
 - 1.1 IU of Vit E/kg of fish oil
 - Nordic Naturals, Welactin, Nature’s logic
 - RAAS Inhibition

Nonazotemic Dogs and Cats

<table>
<thead>
<tr>
<th>Level of Response</th>
<th>Magnitude of Proteinuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor</td>
<td>MA, UPC ≤ 0.5</td>
</tr>
<tr>
<td>Investigate</td>
<td>UPC > 1.5</td>
</tr>
<tr>
<td>Intervene</td>
<td>UPC > 2.0</td>
</tr>
</tbody>
</table>

- RAAS Inhibition
Substaging by Blood Pressure

<table>
<thead>
<tr>
<th>Blood Pressure Intervals</th>
<th>Blood Pressure Stage</th>
<th>Risk of Organ Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td><150</td>
<td>Normotensive</td>
<td>Minimal</td>
</tr>
<tr>
<td>150-159</td>
<td>Borderline Hypertensive</td>
<td>Low</td>
</tr>
<tr>
<td>160-179</td>
<td>Hypertensive</td>
<td>Moderate</td>
</tr>
<tr>
<td>>180</td>
<td>Severely Hypertensive</td>
<td>High</td>
</tr>
</tbody>
</table>

- Take multiple blood pressure measurements
- Use breed specific reference ranges
- Sighthounds tend to have higher blood pressure

- Target organ damage
 - Eyes
 - Brain
 - Kidneys
 - Cardiovascular system

Inhibition of Renin-Angiotensin-Aldosterone System (RAAS)

- RAAS= major target system to reduce proteinuria
- Angiotensin-converting enzyme inhibitor (ACEI)
 - Enalapril and Ramipril
 - Proven to reduce proteinuria (Grauer et al, 2000)
- Angiotensin-receptor blocker (ARB)
 - Losartan and Telmisartan
- Aldosterone-receptor blocker
 - Spironolactone
- Renin Inhibitors
 - Aliskirine
Doses of Common Inhibitors of RAAS

<table>
<thead>
<tr>
<th>Dose</th>
<th>Brand Name</th>
<th>Schedule</th>
<th>Target Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125 mg/kg PO q24h</td>
<td>Benazepril</td>
<td>Definite</td>
<td>12.5 mg PO once daily</td>
</tr>
<tr>
<td>0.25 mg/kg PO q24h</td>
<td>Lisinopril</td>
<td>Definite</td>
<td>25 mg PO once daily</td>
</tr>
<tr>
<td>5 mg PO q24h</td>
<td>Enalapril</td>
<td>Definite</td>
<td>5 mg PO once daily</td>
</tr>
<tr>
<td>10 mg PO q24h</td>
<td>Captopril</td>
<td>Definite</td>
<td>10 mg PO once daily</td>
</tr>
</tbody>
</table>

Inhibition of RAAS

• Angiotensin-converting enzyme inhibitors (ACEis)
 • Decrease efferent arteriolar resistance
 • Serum Creatinine should be monitored
 • Creatinine (>30% from baseline)
 • Increased risk with dehydration
 • Caution with Stage 4 CKD
 • Hyperkalemia
 • Enalapril
 • Primarily excreted by kidney
 • Benazepril
 • Mostly eliminated through liver
 • Not affected by renal function

Inhibition of RAAS

• Angiotensin-receptor blockers (ARBs)
 • Block Angiotensin II receptor
 • Reduce proteinuria
 • Combined therapy (ACEi & ARB)
 • Blockade of AII receptor-increased renin
 • ACEi incompletely block formation of Angiotensin II
 • Monotherapy-incomplete block of RAAS
 • Aldosterone-receptor blockers
 • Adverse effects from hyperaldosteronism
 • Useful if persistent proteinuria with ACEi & ARB
Monitoring RAAS Inhibition

- When adjusting therapy (dose or drug)
 - 1-2 weeks
 - Creat, K, BP, UPC
 - Day-to-day variation in UPC
 - Greater when UPC>4.0 (Nabity MB. et al, 2007)
 - Use 2-3 collections
 - Target UPC <0.5

- Hyperkalemia
 - Common in dogs with renal disease
 - Potassium >6.0 (monitor)
 - Evaluate ECG
 - Potassium >6.5 (modify)

- Treatment
 - Reduce ACEi or ARB
 - Stop Spironolactone
 - Potassium-reduced home cook diet (Segovis C. et al, 2010)
 - Potassium binder (Kayexalate)

Antithrombotic Therapy

- Thromboembolism=complication of proteinuria
 - Reported rate up to 25% (Cook AK. et al, 1996)
 - Reduced level of Antithrombin III
 - Correlate with albumin
 - Increased risk of thromboembolism

- Heparin and Warfarin
 - Current recommendations (Consensus Statement)
 - Low dose aspirin (0.5-5.0 mg/kg daily)
 - <1 mg/kg/day may not be effective (Hoh CM. et al, 2011)
 - Clopidogrel 1.1 mg/kg q24
Hypertension

- Often silent and slowly progressive
- Be certain of diagnosis
 - White-coat effect
 - Evaluate
 - Cuff size
 - Site
 - Position
- When to treat
 - Systolic > 160 mmHg
 - Diastolic > 100 mmHg
- Goals of treatment
 - Systolic < 150 mmHg
 - Diastolic < 95 mmHg

Management of Hypertension

- RAAS Inhibitors
 - Reduce BP 10-15%
 - Antiproteinuric
 - ACE is appropriate 1st step
 - ARB if needed
 - Calcium channel blocker (Amlodipine)
 - 0.1-0.75 mg/kg PO q24
- Beta Blocker (Atenolol)
 - 0.25-1.0 mg/kg PO q12
 - Direct Vasodilator (Hydralazine)
 - 0.5-2mg/kg PO q12

Renal Secondary Hyperparathyroidism

- Reduced GFR
 - Promotes phosphorus retention
 - Inhibition of 1a-hydroxylase
 - Decrease calcium
- Increased PTH production
 - Increase phosphaturia
 - Maintain normal phosphate (initially)
- Calcitriol deficiency
 - Parathyroid gland hyperplasia=PTH
 - Want to minimize Ca & P disturbances
Dietary Intervention

• Feed a Renal Diet
 • 1st step in treatment of CKD
 • IRIS Stage 2-4
 • Recent studies show benefit: IRIS Stage 1
 • Geriatric dogs (Hall JA et al, 2016)
 • Geriatric cats (Hall JA et al, 2016)
 • Controversial in cats
 • Modest protein restriction

• Diet modifications
 • Reduced protein, phosphorus
 • Increased B vitamins, caloric density and soluble fiber
 • Supplemented omega 3 and antioxidants
 • Major benefit
 • Decrease progression of CKD
 • Increase survival

Phosphorus

• Negative effects of phosphorus
 • Renal secondary hyperparathyroidism
 • Increased levels of FGF-23 (Finch NC et al, 2013)
 • Reduced levels of calcitriol
 • Increased Ca x P product=mineralization
 • Risk of death 4.2x higher when Ca x P product>70 (Braff J et al, 2014)
 • Progression of CKD
 • Phosphorus Goal
 • 2.7-4.5 g/dl
 • Optimal goal-lower half of RR

Phosphorus Binders

• Aluminum Salts
 • Most commonly used
 • Inexpensive
 • Good phosphorus binding
 • No known safe dose in humans
 • 30-100 mg/kg/day-divided with meals
 • GIVE WITH FOOD!
 • Monitor q10-14 days, then 4-6 weeks

• Side effects
 • Constipation
 • Hypophosphatemia
 • Reduced drug absorption
 • Fluoroquinolones, Tetracyclines, Steroids, Thyroid hormones, H-2 antagonists
 • Aluminum toxicity (chronic use)
 • Neuromuscular effects, Myocytosis
Calcium Salts

- Calcium Acetate (PhosLo, Calphron)
 - Good phosphorous binder
 - 2x more than Calcium Carbonate
 - Less Hypercalcemia
 - Caution with Calcitriol
 - Drug Interactions: Fluoroquinolones, Tetracyclines, Levothyroxine, Calcitriol
 - Dose 20-40 mg/kg each meal

- Calcium Carbonate (Epakitin/Tums)
 - Oral phosphorus binder, antacid
 - Dose 90-150 mg/kg/day
 - Divided and given with meals

Alternate Phosphorus Binders

- Sevelamer (Renagel)
 - No Calcium/Aluminum
 - Expensive
 - May reduce absorption of vitamins
 - Dose 200-1600 mg/dose q8-12

- Lanthanum Carbonate (Lantharenol/Renalzin)
 - Excellent phosphorus binder
 - No known toxicities
 - Really Expensive!
 - Dose 30-60 mg/kg/day

Alternate Phosphorus Binders

- Lenziaren (SBR759)
 - New oral phosphorus binder
 - Insoluble complex of iron oxide/hydroxide
 - Increased binding of iron to phosphate
 - Not yet commercially available
 - Dose 0.125-1.0 g/day

- Niacinamide
 - Safe and fairly effective
 - Contraindicated with liver dz, ulcers
 - Dose 125-500 mg/day
Calcitriol

- Why use Calcitriol with CKD?
 - Decreased PTH
 - Minimal increase in iCa
 - Correct absolute/relative deficiency
 - Occupy Vitamin D receptors
- Intra-renal effects
 - Anti-inflammatory
 - Anti-fibrotic
 - Reduce RAAS
- Increased survival for azotemic dogs (Polzin D et al, 2005)
- IRIS Stage 3-4
- Mean Creatinine 4.0
- MST 365 days vs 250 days

Calcitriol

- Ca and P levels should be normal
 - Prior to treatment (<6.0 mg/dl)
 - Do not use if hyperphosphatemic
 - Increased risk for tissue mineralization
 - Caution if susceptible to CaOx uroliths
 - Promotes hypercalciuria
- If hypercalcemia develops
 - Discontinue use (at least 1 week)
 - Therapy may be able to be reinstituted
 - Lower dose, altered dosing
 - Monitor Ca, P PTH
 - Assess after 1-2 weeks, then q 6 months
 - PTH also measure after 4-6 weeks
 - Increase dose if still elevated

Calcitriol-Emerging Protocol

- High Dose Twice Weekly
 - 9-12ng/kg q 3.5 days
 - 2.5-3.5 ng/kg q 3.5 days
 - Tuesday PM, Saturday AM
 - Wednesday AM, Saturday PM
 - Still Controls PTH
 - Lessens Concern for Hypercalcemia
- Daily Dosing
 - 2-2.5 ng/kg PO SID (initially)
 - Do not exceed 5 ng/kg/day
 - Preferably in evening/empty stomach

Specialized Veterinary Services 24 Hour Animal Emergency
Vitamin D and D-metabolite Options

- Vit D$_2$ - Ergocalciferol
 - Initial: 4,000-6,000 U/kg/day
 - Maintenance: 1,000-2,000 U/kg daily-weekly
 - Onset: 5-21 days
- 25(OH) Vit D - Calcidiol
- 1,25(OH)$_2$ VitD - Calcitriol
 - Initial: 20-30 ng/kg/day (3-4 days)
 - Maintenance: 5-15 ng/kg/day
 - Rapid onset (~1-4 days)
 - Short duration (2-3 days)

Hypokalemia

- Potassium depletion
 - Uncommon in dogs
 - Common in cats IRIS stage 2-3
- Negative effects
 - Reduced renal blood flow
 - Promotes polyuria
 - Hypokalemic polymyopathy
 - Muscle weakness, Cervical ventroflexion
- Oral supplementation
 - Potassium gluconate (2-6 mEq/cat/d)
 - Potassium citrate (40-60 mg/kg/d)
 - Alkalization therapy

Metabolic Acidosis

- When to supplement
 - HCO$_3$ < 15 mmol/L
- Treatment options
 - Renal diet
 - First step
 - Sodium bicarbonate
 - 0.22 mg/kg q8-12 hrs
 - Potassium citrate
 - Hypokalemia + Metabolic acidosis
 - 40-60 mg/kg q8-12 hrs
 - Risk for excessive alkalization
 - Parenteral NaHCO$_3$
 - pH > 7.10

- Oral supplementation
 - Potassium gluconate (2-6 mEq/cat/d)
 - Potassium citrate (40-60 mg/kg/d)
 - Alkalization therapy
Anemia

- Multifactorial
 - Latrogenic
 - Blood loss
 - Reduced lifespan
 - Poor nutrition/Fe deficiency
 - Decreased EPO

- Treatment
 - H2 blockers/Proton pump inhibitors + Sucralfate
 - Iron Dextran
 - 10-20 mg/kg IM
 - Ferrous sulfate
 - 100-300 mg per dog PO SID

- Erythropoietin
 - Erythropoietic agent
 - 100 units/kg SQ 3x weekly

- Darbepoietin (Chalhoub et al, 2012)
 - Recombinant human analog
 - Less immunogenic
 - Administer less frequently
 - More expensive
 - When to start?
 - PCV<20%
 - 0.25-1.0 mcg/kg SQ weekly

Other Management

- Drug Therapy
 - Use caution with renal metabolism
 - Antibiotics
 - Penicillins, cephalosporins, fluoroquinolones, aminoglycosides
 - Amphotericin B
 - Chemotherapy
 - Cisplatin, Carboplatin, Doxorubicin
 - Atenolol
 - Gabapentin
 - Other

- Subcutaneous fluids
 - As needed to maintain hydration
 - IRIS Stage 3-4

- Antihypertensive medications
 - Atenolol
 - Gabapentin

- Analgesia
 - Atenolol
 - Gabapentin

- Corticosteroids
 - As needed for IRIS Stage 3-4

- Other
 - Subcutaneous fluids
 - Analgesia
 - Corticosteroids
 - Antihypertensive medications
Summary CKD Treatment

- Diet
- Great phosphorus control
- Great proteinuria control
- Great blood pressure control
- RAAS Inactivation
- Calcitriol
- Other management

References

- Hall JA et al. JAVMA 2016; 11:e0153654
- Hall JA et al. JAVMA 2016; 11:e0153653

References

- Hoh CM, Smith SA, McMichael M, Byrne JE. Urinary thromboxane metabolites are inconsistently affected by low dose aspirin administration to healthy dogs. JAVMA 2011; 72:1038.